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Abstract

A finite strain formulation of the Johnson Cook plasticity and damage model and it’s nu-
merical implementation into the ALEGRA code is presented. The goal of this work is to
improve the predictive material failure capability of the Johnson Cook model. The new im-
plementation consists of a coupling of damage and the stored elastic energy as well as the
minimum failure strain criteria for spall included in the original model development. This
effort establishes the necessary foundation for a thermodynamically consistent and complete
continuum solid material model, for which all intensive properties derive from a common en-
ergy. The motivation for developing such a model is to improve upon ALEGRA’s present
combined model framework. Several applications of the new Johnson Cook implementation
are presented. Deformation driven loading paths demonstrate the basic features of the new
model formulation. Use of the model produces good comparisons with experimental Taylor
impact data. Localized deformation leading to fragmentation is produced for expanding ring
and exploding cylinder applications.
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1 Introduction

The phenomenological continuum solid mechanics plasticity and damage models developed by
Johnson and Cook [1, 2] are among the most extensively used by computational physics codes
to simulate high loading rate applications. Users of the ALEGRA multi-physics multi-material
finite element code [3, 4] rely heavily on the Johnson Cook model to provide predictions of plastic
material behavior and material failure. A high degree of success has been achieved using the
Johnson Cook models in ALEGRA to represent material response for shock and solid dynamics
applications at an engineering scale. Despite this success, the ability to consistently reproduce
physically realistic material failure results remains elusive.

The source of this issue could be attributed to the validity of the model itself, potential in-
adequacies of the model’s numerical implementation or a combination of both. This work fo-
cuses solely on improvements to the implementation of the Johnson Cook model given any of its
shortcomings for predicting material behavior. The current implementation of the Johnson Cook
damage model is treated as an afterthought in ALEGRA’s combined material model framework
[4]. This is because the damage evolution equation is not coupled to the evaluation of the John-
son Cook plasticity model, which in the opinion of the author, is the proper treatment. Instead,
the damage model is evaluated independently and its result is used as a criterion for the initiation
of the material failure process that is teated by a completely different model. This algorithmic
treatment of damage models is questionable in general, and motivates the development of a new
implementation founded on a continuum formulation that includes the simultaneous evolution of
both plasticity and damage as well as the associated degradation of the material’s load carrying
capacity.

ALEGRA’s combined model framework preforms a careful series of different material model
evaluations that are generally based on the spherical and deviatoric splitting of the stress tensor.
In general, the pressure is obtained from an equation of state (EOS) and the stress deviator is
obtained from the evaluation of a continuum plasticity model (i.e. Johnson Cook plasticity) along
with plastic strain history variables. An infinitesimal (small) strain formulation based on isotropic
linear elasticity is assumed for the plasticity model and any contribution to the pressure from the
plasticity model solution is discarded and replaced with the value predicted by the EOS. Since an
EOS is not generally equipped to handle tensile pressure states, the evaluation of a void insertion
model within the combined model framework has proved necessary. Once a material is loaded
to a tensile failure pressure, this model controls the volume fraction of void (empty space) at the
individual cell level by adjusting material density as the pressure is reduced to zero over time. The
intended effect is the loss of tensile load carrying capability, material separation and mitigation of
tensile states predicted by the EOS, which are generally constructed in an ad hoc fashion and are
prone to prediction of unphysical material states. If material failure modeling is desired, then a
damage model (i.e. Johnson Cook damage) is applied on top of this framework. The evolution
of the damage history variable is evaluated independently, uncoupled from the plasticity model.
Degradation of the stress is not initiated until a material is completely damaged (damage has a value
of one). At this point, degradation is controlled by the void insertion model that reduces the tensile
failure pressure to a zero value over a certain number of computational cycles. The stress deviator
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is degraded similarly. An inconsistency lies in the fact that the void insertion tensile pressure failure
criterion and the complete evolution of damage dictated by the Johnson Cook damage model do not
necessarily coincide. Typically, a damage variable is coupled to the constitutive model equations
through the degradation of stress or elastic parameters. However, this is not the case in ALEGRA’s
combined model implementation, for which the damage variable does not actually produce any
degradation. In addition, the tensile failure pressure criterion differs from the minimum failure
strain criterion that is actually used in the original development of the model [2].

The immediate objective of the present work is to improve the predictive material failure ca-
pability of the Johnson Cook model. A new implementation of the Johnson Cook plasticity and
damage model in ALEGRA is preformed in order to achieve this goal, and attempt to offer fun-
damental improvements to the overall aforementioned combined material model framework. A
finite strain formulation of the model is utilized that includes coupling between damage and the
stored elastic energy as well as the minimum failure strain criterion for spall included in the origi-
nal work [2]. This approach has several advantages. First, the finite strain deformation framework
properly incorporates the geometric nonlinearities associated with large deformation continuum
mechanics, appropriate for the intended applications. The natural incorporation of hyperelasticity
into the finite strain formulation explicitly provides a stored energy function, from which the inten-
sive material variables (i.e. stress, temperature, etc.) are derived. This feature sets the constitutive
model on the same theoretical continuum thermodynamic footing as equation of state models. An
adequate framework is provided that can produce a consistent thermodynamic material state for
solids that includes the stress and history variables. Such a framework could potentially eliminate
need for the spherical and deviatoric splitting of the stress tensor that is currently necessitated by
the evaluation of EOS and solid constitutive models that produce inconsistent pressure states, as
well as ad hoc treatment of tensile states in the EOS models. The application of some of these
ideas can be found in references [5, 6, 7, 8, 9, 10]. The coupling of the damage history variable
to the elastic stored energy results in damaged material states that reflect a loss of load carrying
capability rather than the current uncoupled approach that only uses damage as a failure initiation
criterion for another model (i.e. void insertion).

This work focuses on solid material states predicted only by the Johnson Cook constitutive
model, in particular those leading to material failure. The incorporation of a complete thermody-
namic state remains as future work. The new Johnson Cook implementation is applied to a range
of applications. Simple loading paths demonstrate the basic capabilities. Taylor impact problem
results for plasticity compare well to experimental data. Expending ring and exploding cylinder
problems then demonstrate examples of localized damage and fragmentation that are intuitively ex-
pected for such applications. This report is organized as follows. Section 2 summarizes isotropic
continuum finite strain plasticity. A computational solution method is presented in Section 3. The
Johnson Cook plasticity and damage models, their computational approaches and implementa-
tion details are then presented in Section 4. Results for several applications are then presented in
Section 5. Finally conclusions are discussed and future work efforts are identified in Section 6.
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2 Summary of Continuum Finite Strain Plasticity

The continuum equations for finite strain plasticity presented in this section are based on references
[11] and [12]. The discussion is restricted to the continuum solid material constitutive (closure)
model that relates the deformation to the stress tensor at a single point in the material. The stress is
the essential quantity required for evaluation of the internal force contribution to the conservation
of linear momentum. The four elements that generally define inelastic constitutive models are
discussed. These elements are the kinematics, elasticity, plastic yield criterion and plastic flow
evolution.

2.1 Kinematics

Consider a point in a solid continuum body, X, in its initial undeformed state. Let x denote the
position of that same material point in the final deformed configuration of the solid body. There
exists a unique mapping, x = x(X), relating the initial and final positions of the material point. The
deformation gradient F is a second order tensor defined as follows:

F =
dx
dX

(1)

The deformation gradient is the fundamental deformation measure from which all other deforma-
tion measures (strains) are derived, including the infinitesimal (small) strain approximation. It
provides the transformation between deformed (dx) and undeformed (dX) line segments of ma-
terial; dx = F ·dX and dX = F−1 ·dx. The elastic and plastic contributions to a deformation are
defined by the following multiplicative decomposition of F.

F = Fe ·Fp (2)

The superscripts e and p are used to denote kinematic quantities associated with elastic and plastic
deformations respectively. Given the definition in equation (2), the deformation measures relevant
to the development of the finite strain plasticity equations and their solution algorithms will be
defined. The left polar decomposition of F is

F = V ·R (3)

where V = VT and R−1 = RT . The elastic and plastic deformation gradients are decomposed
similarly.

Fe = Ve ·Re (4)
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Fp = Vp ·Rp (5)

The left Cauchy-Green tensor, b, and the elastic left Cauchy-Green tensor, be are defined as fol-
lows:

b = F ·FT = V2 (6)

be = Fe ·FeT = Ve2 (7)

The right Cauchy-Green tensor, C is

C = FT ·F (8)

and the inverse plastic right Cauchy-Green tensor is

Cp−1 = Fp−1 ·Fp−T = F−1 ·be ·F−T (9)

The logarithmic strain tensor, ε and elastic logarithmic strain tensor, εe are

ε =
1
2

ln(b) (10)

ε
e =

1
2

ln(be) (11)

Volumetric deformations are defined in terms of the quantity, J > 0, defined as follows:

J = det(F) = det(Fe)det(Fp) = JeJp (12)

This development assumes isochoric plastic deformation, which places the following restrictions
on the elastic and plastic contributions of J.

Jp = 1 Je = J (13)

The isochoric elastic left Cauchy-Green tensor, b̄e, defined below, has a determinant value of 1.

b̄e = Je− 2
3 be (14)
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The following relationship should also be noted.

ln(Je) = tr(εe) (15)

Let L denote the velocity gradient. Two expressions for L are

L = Ḟ ·F−1 = D+W (16)

where a superimposed dot denotes a material time derivative, D is the deformation rate (symmetric
part of the velocity gradient) and W is the spin (antisymmetric part of the velocity gradient). The
plastic velocity gradient is

Lp = Ḟp ·Fp−1 = Dp +Wp (17)

The plastic deformation is also assumed to be irrotational, which results in the following simplifi-
cation.

Wp = 0 (18)

2.2 Isotropic Hyperelasticity

Consider an isotropic hyperelastic (Hemholtz) stored energy function, Ψ, of an elastic deformation
measure as follows:

Ψ = Ψ(Fe) = Ψ(be) = Ψ(εe) (19)

The quantity, Ψ represents energy per unit reference (initial) volume. It is split into volumetric and
deviatoric contributions denoted by the superscripts vol and dev respectively. Split representations
of Ψ in terms of be and εe are

Ψ(be) = Ψ
vol(Je)+Ψ

dev(b̄e) (20)

and

Ψ(εe) = Ψ
vol(Je)+Ψ

dev(εedev) (21)

where
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ε
edev = ε

e− 1
3

tr(εe)I (22)

The stress tensor is derived from the elastic stored energy. The Kirchhoff stress definition is

τ =
∂Ψ

∂Fe ·F
eT = 2

∂Ψ

∂be ·b
e =

∂Ψ

∂εe (23)

and the Cauchy stress is obtained from the following relationship.

σ = Jτ (24)

A commonly used Neo Hookean model is

Ψ(be) =
κ

2

(
1
2
(Je2−1)− ln(Je)

)
+

µ

2
(
b̄e : I−3

)
(25)

where κ is the bulk modulus and µ is the shear modulus. It can be shown, using the definition in
equation (23), that the Kirchhoff stress associated with the Neo Hookean form of stored energy in
equation (25) is

τ =
κ

2
(Je2−1)I+µJe− 2

3 bedev (26)

The isotropic nature of the scalar hyperelastic energy function Ψ(Fe) plays an important role in the
algorithmic developments that follow. Isotropy of Ψ with respect to the tensor Fe means that the
value of Ψ is independent of orthogonal transformations of Fe such that Ψ(Fe) = Ψ(Q ·Fe ·QT )
for all rotation tensors, Q (Q−1 = QT ). An important consequence of isotropy is the resulting
coaxial relationship between the tensor argument, be, and the derivative of the isotropic function
with respect to the tensor argument, ∂Ψ/∂be. The coaxial tensors, be and ∂Ψ/∂be, share the
same principal basis, and consequently commute with each other. In the case of Ψ(be) = Ψ(εe),
the following relationships hold

be · ∂Ψ

∂be =
∂Ψ

∂be ·b
e

ε
e · ∂Ψ

∂εe =
∂Ψ

∂εe · ε
e (27)

The following important result is easily obtained by inspection of equations (23) and (27).

be · τ = τ ·be
ε

e · τ = τ · εe (28)
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2.3 Plastic Yield

The isotropic yield surface function, F = F(τ,α) defines the elastic limit in stress space, for which
the quantity, α , represents a set of history variables. The criterion for plastic deformation is

F(τ,α)< 0 elastic behavior
F(τ,α) = 0 evolution of plastic flow (consistency condition)
F(τ,α)> 0 not permitted (indication that plasticity needs to evolve)

(29)

A common isotropic plasticity model is the J2 plasticity model with hardening. The associated
yield function is

F(τ, ε̄) = τ̄−Y (ε̄) (30)

where Y is the hardening function, ε̄ is the scalar equivalent plastic strain history variable and τ̄ is
the Von Mises stress, defined as follows:

τ̄ =

(
3
2

τ
dev : τ

dev
) 1

2

(31)

It is important to note the isotropy of F = F(τ,α) with respect to τ . As a result, F(τ,α) =
F(Q · τ ·QT ,α) and the following coaxial relationship holds (see discussion in section 2.2).

∂F
∂τ
· τ = τ · ∂F

∂τ
(32)

2.4 Evolution of Plastic Flow

The evolution of the rotated plastic deformation rate is assumed to follow an associative flow rule
defined in [11] as follows :

Re ·Dp ·ReT = λ̇
∂F
∂τ

(33)

The consistency variable, λ , is a monotonically increasing quantity requiring that

λ̇ ≥ 0 (34)
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The combination of the kinematic relationships in equations (17) and (18) and equation (33) give
the following result for the evolution of the plastic deformation gradient.

Ḟp = λ̇ReT · ∂F
∂τ
·Re ·Fp (35)

The evolution of history variables is assumed to have a similar form to that of equation (33).

α̇ = λ̇h (36)

The typically assumed form of h is

h =
∂F
∂α

(37)

Lastly, important relationships, established for future reference, are direct results of isotropy of
both Ψ(be) and F(τ,α). Combination of the elastic and plastic isotropy relationships in equations
(28) and (32) and the kinematic relationship in equation (7) provides the following results to be
used in later algorithmic developments:

∂F
∂τ
·be = be · ∂F

∂τ
(38)

∂F
∂τ
·Ve = Ve · ∂F

∂τ
(39)

2.5 Summary of Finite Strain Plasticity Equations

In summary, the development of the finite strain plasticity equations assume isotropy of the hy-
perelastic stored energy function Ψ and the plastic yield function, F . Associativity of the plastic
deformation rate evolution is also assumed. Given these assumptions, the finite strain plasticity
equations are provided below and utilized in the algorithmic development of the following section.
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F = Fe ·Fp finite strain elastic-plastic kinematics

τ =
∂Ψ

∂Fe ·F
eT elasticity

F(τ,α) = 0 consistency condition

Ḟp = λ̇ReT · ∂F
∂τ
·Re ·Fp evolution of plastic flow

α̇ = λ̇h history variable evolution

(40)
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3 A Computational Method for Finite Strain Plasticity

This section summarizes a general elastic predictor algorithm for obtaining a solution to the time-
discretized system of equations in (40). Consider the equations in (40) to be an initial value prob-
lem for which initial problem data is known. Let the superscript n denote a discrete time index
indicating the value of a quantity at discrete time tn. Given the initial data at time tn, the solution
at time tn+1 = tn +∆t is sought. Specifically, the initial values for Kirchhoff stress τn, inverse
plastic right Cauchy-Green tensor, Cp−1n and the history variables αn are available and τn+1,
Cp−1n+1 and αn+1 are the desired solutions. The choice of using Cp−1n+1 as the plastic deforma-
tion measure of interest is based mostly on convenience from an algorithmic perspective, which
will become clear later. It is also assumed that the updated deformation gradient Fn+1 is known.
The previously computed update is

Fn+1 = ∆F ·Fn (41)

where the incremental deformation gradient ,∆F, is applied.

The solution algorithm requires the evaluation of a trial state for which the incremental defor-
mation is assumed to be elastic. The trial elastic deformation gradient at tn+1 is

Fetr = ∆F ·Fen (42)

where the superscript tr indicates an elastic trial value of a quantity. It follows that an alternative
expression for Fn+1 in terms of the elastic trial state is

Fn+1 = Fetr ·Fpn (43)

The value for betr is

betr = ∆F ·ben ·∆FT = Fetr ·Fetr T (44)

Use of equations (9) and (42) lead to the following alternative expression for betr stated here for
future reference.

betr = Fn+1 ·Cp−1n ·Fn+1T (45)

Computation of εetr is obtained from equation (11)

ε
etr =

1
2

ln(betr) (46)
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The trial stress computed for the elastic trial state is

τ
tr =

∂Ψ

∂εe (ε
etr) (47)

The plastic yield function is evaluated at the trial state as F tr = F(τ tr,αn). If F tr < 0, then the
deformation is completely elastic and the trivial material state is update is

τn+1 = τ tr

Cp−1n+1 = Cp−1n

αn+1 = αn

(48)

If F tr >= 0, then plastic flow must evolve in order to satisfy the time-discretized system of equa-
tions in (40).

The key component of this solution algorithm is the time integration of the plastic flow evolu-
tion equation in (35), restated below for convenience.

Ḟp = λ̇ReT · ∂F
∂τ
·Re ·Fp

Given the initial data, Fpn, equation (35) is integrated over time increment ∆t = tn+1− tn using a
backward (fully implicit) exponential map. The result is

Fpn+1 = exp

[
∆tλ̇ReT n+1 ·

(
∂F
∂τ

)n+1

·Ren+1

]
·Fpn (49)

It can be shown that the result in equation (49) reduces to the following logarithmic strain update.
Details of the derivation, found in Appendix A, rely heavily on isotropy of the stored energy and
yield function and the resulting coaxial relationships in equations (38) and (39).

ε
en+1 = ε

etr−∆λ

(
∂F
∂τ

)n+1

(50)

The result in equation (50) is nearly identical to the form of the incremental plastic strain update
used for infinitesmal strain plasticity. The incremental evolution of the history variables is

∆α = ∆λhn+1 (51)
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and the history variable update is

α
n+1 = α

n +∆α (52)

The updated stress is computed as follows:

τ
n+1 =

∂Ψ

∂εe (ε
en+1) (53)

The finial material state at tn+1 must also satisfy the consistency condition.

F(τn+1,αn+1) = 0 (54)

In summary, if the trial state based on equations (42)-(47) result in a trial yield function value
F tr = F(τ tr,αn)> 0 then plastic flow must evolve in order to solve the following time-discretized
system of nonlinear equations for finite strain plasticity for the updated state defined by τn+1,
Cp−1n+1 and αn+1:

F(τn+1,αn+1) = 0

τn+1 =
∂Ψ

∂εe (ε
en+1)

εen+1 = εetr−∆λ

(
∂F
∂τ

)n+1

∆α = ∆λhn+1

αn+1 = αn +∆α

(55)

Once the solution is obtained for the system in equation (55), the value of Cp−1n+1 is obtained
through the following series of operations:

ben+1 = exp
(
2ε

en+1) (56)

Cp−1n+1 = Fn+1−1 ·ben+1 ·Fn+1−T (57)

Typically the updated solution for the Cauchy stress, σn+1 , is required.
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σ
n+1 =

1
Jn+1 τ

n+1 (58)

The updated deformation gradient determinant, Jn+1, is

Jn+1 = det
(
Fn+1) (59)

The use of the particular finite strain plasticity solution algorithm outlined in this section has
several advantages. One advantage is that it is easily adaptable from existing small strain plasticity
solution algorithms due to the additive nature of the elastic logarithmic strain measure utilized.
The elastic and plastic isotropy properties provide other computational advantages. Obviously, the
development of the algorithm itself relies on these properties. Since isotropy dictates that ben+1

and τn+1 share the same principal bases, the solution procedure for the nonlinear system in equa-
tion (55) can be performed with respect to stress and strain components in that common principal
basis. This convenient property provides a computational cost savings that allows for a minimal
set of equations (unknowns) to be solved in (55). The eigenpair computation of betr need only be
performed once prior to the solution procedure. Once the solution to the principal values of ben+1

and τn+1 are obtained, their representations in the problem basis are reconstructed from the eigen-
vectors. The initial eigenpair solution is necessary anyway in order to perform the second order
tensor natural log and exponentiation operations to obtain εetr and ben+1 respectively. However,
it is important to note that the aforementioned advantages are precluded with the introduction of
an anisotropic hyperelastic stored energy or yield surface function or a non-associative plastic flow
relationship. In either case, the coaxial relationships established in equations (38) and (39) would
no longer be valid, requiring development of a different solution algorithm.
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4 The Johnson Cook Finite Strain Constitutive Model

The finite strain formulation of the Johnson-Cook plasticity and damage models is presented. The
continuum model is defined first, followed by the numerical algorithm which is implemented into
the ALEGRA multi-physics code. Computational aspects of the implementation specific to the
ALEGRA code are discussed separately.

4.1 The Johnson-Cook Plasticity and Damage Models

The original work of Johnson and Cook for modeling plasticity and damage of metals is found in
[1] and [2] respectively. The Johnson-Cook models are highly utilized in computational physics
codes, including ALEGRA, for the simulation of high loading rate solid dynamics and shock ap-
plications. The simplicity of a relatively small parameter space along with the availability of exten-
sive model parameterizations [13] and validation efforts [14] have made the model very attractive
to users.

The finite strain formulation of the Johnson Cook plasticity model is developed first using
the framework presented Section 2. Equation (40) summarizes this framework. Johnson-Cook
plasticity utilizes the J2 yield function form of F(τ, ε̄) in equation (30), restated below.

F(τ, ε̄) = τ̄−Y (ε̄)

The specific form of the hardening function ([1]), which incorporates dependence on plastic
strain rate and temperature, is

Y (ε̄) =
[
A+Bε̄

N][1+C ln
( ˙̄ε
)][

1−θ
M] (60)

where A, B, C, N and M are model parameters, ˙̄ε is the plastic strain rate and the homologous
temperature, θ is defined as follows:

θ =
T −Tr

TM−Tr
(61)

The quantities T , TM and Tr are the material temperature, melt temperature and room temperature
respectively. The equivalent plastic strain, ε̄ , is the single scalar history variable subject to the
following evolution relationship.

˙̄ε = λ̇h (62)
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Equations (30), (60)-(62) and the set of equations in (40) are combined to form the following
Johnson-Cook finite strain plasticity model.

F = Fe ·Fp finite strain elastic-plastic kinematics

τ =
∂Ψ

∂Fe ·F
eT elasticity

F(τ, ε̄) = τ̄−
[
A+Bε̄N][1+C ln

( ˙̄ε
)][

1−θ M]= 0 consistency condition

Ḟp = λ̇ReT · ∂F
∂τ
·Re ·Fp evolution of plastic flow

˙̄ε = λ̇h equivalent plastic strain evolution

(63)

The Johnson-Cook damage model is obtained by introducing a scalar damage history variable,
D, and its associated evolution equation into the set of equations for finite strain plasticity in (63).
The damage quantity is bounded such that 0 ≤ D ≤ 1. A damage value of D = 0 indicates un-
damaged material and a value of D = 1 indicates completely damaged material that has lost load
carrying capacity. The Johnson Cook damage evolution equation, taken from [2], is

Ḋ =
˙̄ε

ε f (64)

The failure strain, ε f , is

ε
f =


[
D1 +D2eD3σ∗

]
[1+D4 ln(ε̇∗)] [1+D5θ ] σ∗ < 1.5

ε
f

min σ∗ ≥ 1.5 (spall)
(65)

where D1, D2, D3, D4, D5 and ε
f

min are model parameters, σ∗, referred to as the triaxial ratio, is

σ
∗ =

P
σ̄

(66)

where P is the hydrostatic pressure defined as P = 1/3tr(σ) and σ̄ is the Von Mises stress. The
quantity ε̇∗ = ˙̄ε/ ˙̄ε0 is the dimensionless plastic strain rate for ˙̄ε0 = 1.

The significance of the triaxial ratio value of σ∗ = 1.5 and the discontinuous nature of the
failure strain function in equation (65) at that value is based on the assumptions made in the original
development work of the Johnson Cook failure model [2]. The value of σ∗ = 1.5 is based on the
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approximate material failure mode transition to spall for σ∗ ≥ 1.5 observed for the materials of
interest. The associated discontinuity of ε f at σ∗ = 1.5 is due to the assumed constant failure
strain treatment of the spall failure process. It is noted that piecewise continuity of ε f at σ∗ = 1.5
is enforced if the following holds.

ε
f

min =
[
D1 +D2eD31.5

]
[1+D4 ln(ε̇∗)] [1+D5θ ] (67)

Two major assumptions are made in the development of the finite strain Johnson Cook damage
model with regard to how the damage variable is applied for limiting load carrying capacity of the
material. First, is to make the yield function a function of damage as follows:

F(τ, ε̄,D) = τ̄− (1−D)Y (ε̄) (68)

The application of damage in equation (68) has the effect of reducing the deviatoric stress to
zero for D = 1. The second major assumption is degradation of stored elastic energy due to the
evolution of damage. A modified elastic stored energy, Ψ̄ = Ψ̄(εe,D), is proposed based on the
split volumetric and deviatoric energy contribution form of Ψ(εe) in equation (21). The proposed
form of Ψ̄(εe,D) is

Ψ̄(εe,D) =

 Ψvol(Je)+(1−D)Ψdev(εedev) σ∗ < 1.5

(1−D)Ψ(εe) σ∗ ≥ 1.5 (spall)
(69)

The degradation of elastic stored energy in equation (69) attempts to reduce load carrying capacity
of the material in a manner consistent with how the Johnson Cook model distinguishes material
failure modes in equation (65). Triaxial states of loading for which σ∗ < 1.5 (which includes
compressive states) experience a degradation of only the deviatoric elastic strain energy contribu-
tion. Loading states for which σ∗ ≥ 1.5 experience a degradation of the total stored energy which
allows for a complete degradation of tensile load carrying capacity consistent with spall failure
and necessary for modeling the material separation that accompany such events. The stored en-
ergy form in equation (69) also allows completely damaged material to retain compressive load
carrying capability.

A summary of the finite strain Johnson Cook failure model is
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F = Fe ·Fp finite strain elastic-plastic kinematics

τ =
∂ Ψ̄

∂εe

(
ε

e =
1
2

ln
(
Fe ·FeT)) elasticity

F(τ, ε̄,D) = τ̄− (1−D)
[
A+Bε̄N][1+C ln

( ˙̄ε
)][

1−θ M]= 0 consistency condition

Ḟp = λ̇ReT · ∂F
∂τ
·Re ·Fp evolution of plastic flow

˙̄ε = λ̇h equivalent plastic strain evolution

Ḋ =
˙̄ε

ε f damage evolution

(70)

where ε f and Ψ̄ are defined in equations (65) and (69) respectively. The set of equations in (70)
can be thought of as two models; one for each triaxial loading range, σ∗ < 1.5 and σ∗ ≥ 1.5.
Determination of which to use is addressed in the following algorithmic developments.

4.2 Numerical Implementation

Development of the time-discretized systems of equations associated with the continuum finite
strain Johnson Cook plasticity and damage models presented in Section 4.1 are based on the gen-
eral finite deformation plasticity computational framework presented in Section 3.

The Johnson Cook plasticity model, summarized in equation (63), is addressed first. Initial
values for Kirchhoff stress τn, inverse plastic right Cauchy-Green tensor, Cp−1n and equivalent
plastic strain ε̄n are available at time tn and τn+1, Cp−1n+1 and ε̄n+1 are the solutions sought at
time tn+1. First, a trial state is evaluated with the use of equations (42)-(47). The plastic yield
function is evaluated at the trial state as F tr = F(τ tr, ε̄n). If F tr < 0, then the elastic material state
update is performed using equation (48). If F tr >= 0, then plastic flow must evolve in order to
satisfy the time-discretized system of equations in (63). These equations are
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F(τn+1, ε̄n+1) = τ̄n+1−
[
A+B(ε̄n+1)N][1+C ln

(
∆ε̄

∆t

)][
1−
(
θ n+1)M

]
= 0

τn+1 =
∂Ψ

∂εe (ε
en+1)

εen+1 = εetr−∆λ

(
∂F
∂τ

)n+1

∆ε̄ = ∆λhn+1

ε̄n+1 = ε̄n +∆ε̄

(71)

where

θ
n+1 =

T n+1−Tr

TM−Tr
(72)

and the current temperature T n+1 is assumed to be known.

Next, the discrete equations for the Johnson Cook damage model, summarized in equation
(70), are presented. Initial values for Kirchhoff stress τn, inverse plastic right Cauchy-Green
tensor, Cp−1n, equivalent plastic strain ε̄n and damage Dn are available at time tn. The val-
ues of τn+1, Cp−1n+1, ε̄n+1 and Dn+1 are the desired solutions. The trial state computation of
F tr = F(τ tr, ε̄n,Dn) is preformed in the same manner described above for the plasticity case. If
F tr >= 0, then plastic deformation and damage must evolve in order to satisfy the time-discretized
system of equations in (70). The set of equations to be solved depends on the value of the trial
triaxial condition σ∗ tr, computed as follows:

σ
∗ tr =

ptr

σ̄ tr (73)

The equation set is
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F(τn+1, ε̄n+1,Dn+1) = τ̄n+1− (1−Dn+1)
[
A+B(ε̄n+1)N][1+C ln

(
∆ε̄

∆t

)][
1−
(
θ n+1)M

]
= 0

τn+1 =



(
∂Ψvol

∂εe

)n+1

+(1−Dn+1)

(
∂Ψdev

∂εe

)n+1

σ∗ tr < 1.5

(1−Dn+1)

(
∂Ψ

∂εe

)n+1

σ∗ tr ≥ 1.5

εen+1 = εetr−∆λ

(
∂F
∂τ

)n+1

∆ε̄ = ∆λhn+1

ε̄n+1 = ε̄n +∆ε̄

∆D =


∆ε̄

([
D1 +D2eD3σ∗n+1

][
1+D4 ln

(
∆ε̄

∆t ˙̄ε0

)][
1+D5θ n+1])−1

σ∗ tr < 1.5

∆ε̄

ε
f

min

σ∗ tr ≥ 1.5

Dn+1 = Dn +∆D

(74)

Newton’s method is used to solve the nonlinear systems of equations describing the discrete
finite strain Johnson Cook plasticity and damage models in equations (71) and (74) respectively.
The systems to be solved are relatively small if full advantage of elastic plastic isotropy is taken (see
Section 3). The plasticity model in (71) has seven equations and the damage model in equation (74)
has eight equations. Once solutions are obtained, the updated Cp−1n+1 is computed from equations
(56)-(57) and the updated σn+1 is obtained from equation (58). The remaining computational
considerations are specific to the host code, ALEGRA, and are discussed next.

4.3 ALEGRA Implementation

The discrete finite strain Johnson Cook plasticity and damage models presented in Section 3 are
implemented into the ALEGRA finite element shock and multi-physics code [3, 4]. The ALE-
GRA constitutive model interface requires more implementation considerations than a typical La-
grangian finite element code owing mostly to its Eulerian motion representation capability that
is used extensively to simulate dynamic large deformation applications with multiple materials.
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Three ALEGRA-specific issues are identified that must be addressed during the implementation of
any constitutive model; availability of kinematic quantities, proper treatment of remapped history
variables and proper treatment of material expansion.

An Eulerian ALEGRA simulation allows material motion through a fixed finite element mesh
that represents the discretization of space. This motion is achieved through remap transport algo-
rithms of material quantities [15]. A single Eulerian computational step (time step) is a two-step
process that consists of a Lagrangian computation [16] to update quantities at time tn+1, followed
by a remap step that transports material quantities through the fixed grid. Not all material quantities
are remapped. Once the remap operation is complete, certain material quantities are reevaluated
in order to achieve a state that is consistent with quantities that are transported via remap. In the
case of dynamic solid mechanics, the material quantities of interest to be remapped are the material
density ρn+1, Vn+1, Rn+1, σn+1, and the history variables, which in this case of material modeled
with the finite strain Johnson Cook model, are Cp−1n+1, ε̄n+1 and Dn+1. A tilde is used to denote
any quantity that has been remapped and an arrow −→ is used to represent a remap operation as
illustrated below for density.

ρ
n+1 −→︸︷︷︸

remap operation

ρ̃
n+1 (75)

The remap transport of scalar valued quantities such as ρn+1, ε̄n+1 and Dn+1 are well un-
derstood and established operations [15]. However, ambiguity arises regarding the appropriate
remapping of second order tensor quantities such as Vn+1, Rn+1, Cp−1n+1 and σn+1. Presently, a
component by component scalar remap scheme is utilized in ALEGRA for second order tensors.
A suitable approach has been demonstrated tor the treatment of the kinematic quantities, Vn+1

and Rn+1, in a component-based remap approach [17]. The approach itself dictates the remap of
Vn+1 and Rn+1 rather then attempting to remap Fn+1. Introduction of finite strain plasticity into
ALEGRA introduces the issue of remapping the tensor-valued history variable, Cp−1n+1, which is
symmetric positive definite (has real positive eigenvalues) and subject to the following isochoric
plasticity constraint that follows from equation (13).

det
(
Cp−1n+1)= 1 (76)

A special remap treatment of Cp−1n+1 is proposed for the implementation of the the finite strain
Johnson Cook model that is loosely based on the work in [18]. The approach is a component-based
remap of the natural log of Cp−1n+1 outlined in the series of operations presented below.
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A = ln
(
Cp−1n+1)

A −→︸︷︷︸
remap operation

Ã

Ã∗ = Ã− 1
3

tr
(
Ã
)

C̃p−1n+1 = exp
(
Ã∗
)

(77)

The remap of the natural log of Cp−1n+1 and subsequent exponentiation ensures a positive definite
result for C̃p−1n+1. The third operation in the series displayed in (77) is necessary to enforce
the isochoric constraint in equation (76). While this extra operation does satisfy the necessary
constraint, it amounts to a post-remap loss of kinematic information, for which the solution quality
impact has not been carefully studied.

Remap of σn+1 in ALEGRA has been preformed for all solid constitutive models up to this
point. In the case of the finite strain Johnson Cook model, σn+1 is not remapped, but reevaluated as
σ̃

n+1, in order to be consistent with the remapped kinematic quantities Ṽn+1, R̃n+1 and C̃p−1n+1.
The evaluation is

σ̃
n+1 =

1
Jn+1

∂Ψ

∂εe (ε̃
en+1) (78)

where

ε̃
en+1 =

1
2

ln(b̃en+1) (79)

b̃en+1 = F̃n+1 · C̃p−1n · F̃n+1T (80)

and F̃n+1 = Ṽn+1 · R̃n+1.

The choice to use Cp−1 as the tensor-valued plasticity history variable that is stored and trans-
ported is based on the availability of kinematic information at the ALEGRA constitutive model
interface. Evaluation of the finite strain Johnson Cook model requires betr, which is typically
obtained from equation (44) as follows.

betr = ∆F ·ben ·∆FT

Since the incremental deformation gradient update, ∆F, is not computed in ALEGRA, the follow-
ing alternative evaluation form of betr from equation (45) is utilized:
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betr = Fn+1 ·Cp−1n ·Fn+1T

Since the updated deformation gradient is easily constructed as Fn+1 = Vn+1 ·Rn+1, it is simply
more convenient to use Cp−1 as the plastic strain history variable.

Since ALEGRA is an explicit dynamics code, a stable time step must be computed every com-
putational cycle. In general, the time step must satisfy the CFL condition for stability. The condi-
tion is

∆t = β
∆x
c

(81)

where the CFL factor β is bounded according to 0 < β ≤ 1, ∆x is a characteristic element length
and the speed of sound in the material, c, is

c =

√
K
ρ

(82)

where K is the bulk modulus. The density is computed based on the conservation of mass. In the
present case, K is approximated based on the hyperelastic model as follows:

K ≈ ∂ 2Ψvol

∂ (Je)2 (83)

The mitigation of excessive material expansion is an important consideration founded on both
physical and practical computational bases. Allowing separation of damaged material is not only
physically intuitive, but prevents the inevitable time step crash (∆t −→ 0) associated with a very
low density material that has been allowed to expand unphysically. Consider the following defini-
tion of volumetric strain at time tn+1.

ε
n+1
v = ln(Jn+1) (84)

An alternative representation of Jn+1 in terms of density is

Jn+1 =
ρ0

ρn+1 (85)

where ρ0 is the initial density of the material at time t0 = 0. The maximum allowable volumetric
strain parameter, εmax

v is introduced into the model and equations (84)-(85) are combined in order
to obtain a minimum allowable density as follows:
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ρ
min = ρ

0e−εmax
v (86)

If Dn+1 = 1 and ρn+1 < ρmin then ρn+1 = ρmin is set. The effect of such a density modification
in ALEGRA is a recalculation of the volume fractions of material, including void (empty space),
on a per cell basis in order to satisfy conservation of mass. Consequently, the volume fraction of
void increases as the damaged material tries to expand and the increase in volume of empty space
allows damaged material to separate. Enforcing the density floor, ρmin, can also prevent very small
time steps due to very distended material.

Additional features of the ALEGRA implementation of the finite strain Johnson Cook model
includes various algorithmic and model input options. An infinitesimal (small strain) formulation
of the model has also been implemented in order to support a basic legacy Johnson Cook capability
for combined models (see [4] for details). Any equation of state model implemented into ALEGRA
can also be used as a sub-model with Johnson Cook. All model parameters can be specified
individually or the user has the option of simply specifying any material available in the existing
pre-defined Johnson Cook material parameter database. Usage of the finite strain Jonson Cook
model in ALEGRA is documented in the ALEGRA user’s manual [4].
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5 ALEGRA Simulations

ALEGRA simulation results for problems utilizing the finite strain Johnson Cook constitutive
model are presented in this section. First, simple deformation driven loading paths are evalu-
ated for both plasticity and damage using a single Lagrangian 3D hexahedral element. Simulation
results from the dynamic Taylor anvil impact problem are compared to experimental data. Lo-
calized deformation due to damage and fragmentation is then demonstrated by an expanding ring
problem. Finally, results from an exploding cylinder application are presented.

All simulation results presented in the following sections utilizes the Neo Hookean hyperelastic
Hemholtz energy form in equation (25), which is restated below.

Ψ(be) =
κ

2

(
1
2
(Je2−1)− ln(Je)

)
+

µ

2
(
b̄e : I−3

)
The verification testing conducted for this hyperelastic model in ALEGRA is the same as that
performed for the LAME implementation [19]. All simulation results reflect isothermal and rate-
independent behavior of the Johnson Cook model, for which T = Tr = 298K (θ = 0), C = 0 and
D4 = 0.

5.1 Lagrangian Single Element Simulations

Deformation driven loading paths are evaluated in ALEGRA for both plasticity and damage by
applying prescribed deformations to a single Lagrangian 3D hexahedral element. The deformation
is prescribed incrementally as follows:

Fn+1 = ∆F ·Fn (87)

The positive index n = 0,1,2, . . . ,nmax in equation (87) denotes time step or cycle, for which
F0 = I, and an incremental deformation gradient, ∆F, is prescribed. Uniaxial strain and simple
shear loading paths are evaluated. The value of ∆F for uniaxial strain is

∆F =

 1± γ 0 0
0 1 0
0 0 1

 (88)

where +γ and −γ represent extension and compression respectively. The value of ∆F for simple
shear is
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∆F =

 1 γ 0
0 1 0
0 0 1

 (89)

The values of the prescribed deformation parameters are nmax = 100 and γ = 0.01. The single
element is initially a cube with side length, h = 1m. Copper material parameters are utilized. The
mass initial mass density is ρ0 = 8930kg/m3. Elastic parameters are κ = 200GPa and µ = 75GPa.
The Johnson Cook plasticity and damage model parameters taken from [2] are A = 89.7MPa,
B = 291.87MPa, N = 0.31, D1 = 0.54, D2 = 4.89 and D3 =−3.03. The minimum failure strain,
obtained from equation (67), is ε

f
min = 0.59.

Results of the single element simulations are displayed in Figures 1 and 2. Each set of results
contains load path representations in stress invariant space, −P −

√
J2, where

√
J2 =

√
3σ̄ and

stretch vs. stress component space, Vxx − σxx or Vxy − σxy. Stored elastic energy history and ε̄

evolution are also included. The equivalent plastic strain evolution for the case of plasticity is
nearly identical for uniaxial strain in tension and compression (lower left Figure 1 ). If the damage
model is evaluated, the evolution of ε̄ for uniaxial tension and compression paths is very different.
The material becomes completely damaged (D = 1 indicated by the constant value of ε̄) in the
case of uniaxial tension, while no noticeable damage evolution occurs for uniaxial compression.
This result is apparent from the loading paths and stored energy history plots of Figure 1. Spall
failure is activated for the tensile loading path, which eventually drives σxx, P and

√
J2 to zero.

Consequently, the stored elastic energy decreases to zero. Since almost no damage accumulates
for compression, the stress and energy histories of the plasticity and damage models are indistin-
guishable. Such a result is expected due to the relatively high failure strains, ε f , predicted for
negative values of the triaxial ratio, σ∗, produced in compression. In contrast, the tensile loading
path utilizes a constant failure strain allowing for the evolution of completely damaged material
with continued loading.

The simple shear loading path, displayed in Figure 2, is also associated with a constant failure
strain value due to a zero value of σ∗ (zero value of P). Damage does evolve for the shear loading
path, indicated by the lower values of stress and stored energy, however the evolution of damage is
restricted by the relatively high value of ε f associated with the loading path.
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Figure 1. Finite strain Johnson Cook model: uniaxial strain
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Figure 2. Finite strain Johnson Cook model: simple shear
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5.2 The Taylor Anvil

The Taylor cylinder experiment [20] is simulated using the finite strain Johnson Cook plasticity
model in ALEGRA . This dynamic test, illustrated in Figure 3, consists of a cylinder impacting a
rigid surface at some initial velocity v0. The numerical analysis follows that performed by Lacy et.
al. [14]. In their work, the Taylor impact problem is used to assess the solution quality of several
codes (including ALEGRA) by observing how well the simulations reproduce the experimental
deformation result [13]. The same basic comparison is performed in the present work.

The description of the problem is taken directly from [14] which is based on the experiments
performed in [13]. The two dimensional axisymmetric cylinder geometry depicted in Figure 3 is
described by an initial radius R = 0.381cm and height H = 2.54cm. The initial velocity of the
cylinder is v0 = 19000cm/s. The copper material parameter values are the same as those used in
Section 5.1.

Taylor anvil ALEGRA simulation comparisons with experimental data are displayed in Figures
4 - 6. Each set of plots displays the initial configuration at t = 0 (left plot) and the final configuration
at t = 80 µs (right plot). The finial configurations are overlaid on experimental deformed test
specimen profile data taken from [14]. Qualitative agreement between the test data and simulations
is observed for Lagrangian, Eulerian and Lagrangian material tracer (LMT) (see reference [21])
simulations displayed in Figures 4, 5 and 6 respectively.

Figure 3. Taylor anvil problem definition (left) and initial config-
uration in Eulerian mesh (right)
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Figure 4. Lagrangian Taylor anvil ALEGRA simulation.

Figure 5. Eulerian Taylor anvil ALEGRA simulation.
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Figure 6. Eulerian LMT Taylor anvil ALEGRA simulation.
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5.3 The Expanding Ring

The localized deformation and fragmentation of an expanding ring subjected to a uniform radial
body force is simulated in ALEGRA. This problem is based on experiments performed by Benson
and Grady [22], in which uniform tensile load is applied to the ring using an electromagnetic
field. The thin aluminum ring has an outer diameter of 32mm and a 1mm × 1mm square cross
section. Experimental results show that material failure of the ring due to circumferential tension
is preceded by ductile necking of the ring cross section which are localized at relatively even spaced
locations along the ring’s circumference.

Aluminum material parameters are utilized. The mass initial mass density is ρ0 = 2787kg/m3.
Elastic parameters are κ = 80.2GPa and µ = 30.5GPa. The Johnson Cook plasticity and damage
model parameters are A = 265MPa, B = 426.42MPa, N = 0.34, D1 = 0.13, D2 = 0.13 and D3 =

−1.5. The minimum failure strain, obtained from equation (67), is ε
f

min = 0.143. In addition, a
maximum volumetric strain parameter value, εmax

v = 0.1 is also prescribed (see Section 4.3).

The localized failure of a geometrically uniform structure subjected to spatially uniform load-
ing is attributed to inhomogeneity in the material. In order to capture this feature of failure of real
materials, a statistical approach is utilized, for which the aleatory uncertainty (uncertainty in spa-
tial variation) and size effect of A are considered (see [23] and [24]). The value of the yield surface
parameter, A which varies spatially, is taken from a Weibull probability distribution function with
the following form:

A = Ā

(
ln(R)
ln
(1

2

)) 1
m

(90)

The median value of A for aluminum is Ā = 265MPa, the Weibull modulus is m = 10, and R is a
random number from a uniform distribution ranging from 0 to 1. A plot of the resulting distribution
is plotted in Figure 7.

The radial loading of the ring is simulated by the application of a prescribed body acceleration
(external force) to the mesh nodes. The body acceleration field a(r, t) is applied to the mesh node
radial positions ri(t) = xiex + yiey, where ex and ey are the global Cartesian unit basis vectors and
(xi,yi,zi) are the corresponding cartesian coordinates of a node. The body acceleration function is

a = a
(
−yi

r
ex +

xi

r
ey

)
(91)

where r =
√

x2
i + y2

i and a = 1.15×107 m/s2.

Deformation results for Lagrangian and Eulerian representations of the expanding ring problem
are displayed in Figures 8 and 9 respectively. The local damaged zones that form in the Lagrangian
problem (Figures 8) are due to plastic necking that initiates locally based on the random spatial
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variability of the yield surface parameter A. The same behavior is observed for the Eulerian case
in Figure 9, but the material is permitted to separate into distinct fragments. The global energy
histories for the simulations displayed in Figure 10 demonstrate an expected loss of the stored
elastic energy due to the fragmentation of the ring. While the elastic energies predicted for the
Lagrangian and Eulerian simulations appear to be similar, there is a very noticeable difference in
the internal energy between the two results that occurs once the elastic stored energy is significantly
reduced. It is possible that the dissipative nature of the remapping operation associated with the
Eulerian computation contributes to this difference.

Figure 7. Distribution of yield strength A
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Figure 8. Lagrangian expanding ring ALEGRA simulation: t = 0
(top), t = 50µs (bottom)
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Figure 9. Eulerian expanding ring ALEGRA simulation: t = 0
(top), t = 50µs (bottom)
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Figure 10. Expanding ring internal and elastic energy
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5.4 The Exploding Cylinder

The fragmentation of a three dimensional hollow aluminum cylinder subjected to an internal det-
onation is simulated in ALEGRA. This problem is similar to the experimental work in [25]. The
inner radius of the cylinder is 3.5cm, the cylinder thickness is 5mm and the cylinder length is
20cm. The Johnson Cook aluminum material parameter values are the same as those used in Sec-
tion 5.3 including the Weibull probability distribution applied to the yield parameter A. Details
of the explosive material inside the cylinder are omitted. A detonation is initiated at a concentric
point located at one end of the cylinder.

Figures 11a - f display a progression of the fragmenting cylinder throughout the 30 µs event.
Each plot is colored according to damage. Only material that retains load carrying capacity is
displayed (D≤ 0.95) in the plots. Restricting the visualization in this manner allows identification
of solid material fragments.
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(a) t = 0µs (b) t = 10µs

(c) t = 15µs (d) t = 20µs

(e) t = 25µs (f) t = 30µs

Figure 11. Exploding cylinder ALEGRA simulation
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6 Conclusions & Future Work

A finite strain formulation of the Johnson Cook plasticity and damage model and its numerical
implementation into the ALEGRA code has been presented. This implementation consists of a
strong coupling of damage and the stored elastic energy as well as the minimum failure strain cri-
terion for spall included in the original model development. The deformation driven loading paths
demonstrated the basic features of the model using Johnson Cook parameterization for copper. A
total loss of load carrying capacity and stored elastic energy is is the result for a spall failure acti-
vated in uniaxial tensile strain. In contrast, no noticeable damage occurs in uniaxial compressive
strain. Use of the Johnson Cook finite strain plasticity model produces good comparisons with
experimental Taylor anvil data. The model is applied to problems that incorporate material failure
using random spatial variation of material parameters. Localized deformation leading to fragmen-
tation is produced in the expanding ring problem while the global elastic stored energy is reduced
to zero. The fragmentation of an exploding cylinder can be visualized by removing the completely
damaged material, leaving behind intact solid fragments that are still able to carry load. The mate-
rial failure simulations preformed for this work reproduce the qualitative nature of the experiments
on which they are based.

This effort has laid down the necessary foundation for a thermodynamically consistent and
complete continuum solid material model, for which all intensive properties derive from a com-
mon energy. The goal of developing such a model is to improve upon the shortcomings of ALE-
GRA’s combined model framework discussed in Section 1. Presently, this work only addresses
thermodynamic quantities associated with solid mechanics, such as stress and history variables.
The introduction of thermodynamic quantities associated with the equation of state (for solids)
still remains as future work that is important for shock and thermomechanical applications.
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A Finite Strain Plastic Flow Time Integration

The key component of this solution algorithm is the time integration of the plastic flow evolution
equation in (35), restated below for convenience.

Ḟp = λ̇ReT · ∂F
∂τ
·Re ·Fp

Given the initial data, Fpn, equation (35) is integrated over time increment ∆t = tn+1− tn using a
backward (fully implicit) exponential map. The result is

Fpn+1 = exp

[
∆tλ̇ReT n+1 ·

(
∂F
∂τ

)n+1

·Ren+1

]
·Fpn (92)

Further simplification of equation (92) yields the following result.

Fpn+1 = ReT n+1 · exp

[
∆λ

(
∂F
∂τ

)n+1
]
·Ren+1 ·Fpn (93)

The quantities Fpn+1 and Fpn can be expressed alternatively using equations (2) and (41). The
results are

Fpn+1 = Fe−1n+1 ·∆F ·Fn (94)

and

Fpn = Fe−1n ·Fn (95)

Equations (93)-(95) are combined. The result is

Fe−1n+1 ·∆F = ReT n+1 · exp

[
∆λ

(
∂F
∂τ

)n+1
]
·Ren+1 ·Fe−1n (96)

After some rearrangement and use of equation (42), equation (96) becomes

Fen+1 = Fetr ·ReT n+1 · exp

[
−∆λ

(
∂F
∂τ

)n+1
]
·Ren+1 (97)
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Post multiplication of each side of equation (97) by Ren+1T and use of equation (4) gives the
following result.

Ven+1 = Fetr ·ReT n+1 · exp

[
−∆λ

(
∂F
∂τ

)n+1
]

(98)

The exponential tensor is moved to the left hand side of equation (98).

Ven+1 · exp

[
∆λ

(
∂F
∂τ

)n+1
]
= Fetr ·ReT n+1 (99)

Each side of equation (99) is post multiplied by its transpose. The result is

Ven+1 · exp

[
2∆λ

(
∂F
∂τ

)n+1
]
·Ven+1 = Vetr ·Vetr (100)

Use is made of equation (7) and the elastic plastic isotropy property in equation (39). Equation
(100) becomes

ben+1 = betr · exp

[
−2∆λ

(
∂F
∂τ

)n+1
]

(101)

Taking the natural log of both sides of equation (101) and use of equation (11) results in the
following expression for the plastic flow evolution.

ε
en+1 = ε

etr−∆λ

(
∂F
∂τ

)n+1

(102)
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